IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER

Este informe contiene información muy importante sobre su agua potable.

Tradúzcalo o hable con alguien que lo entienda bien.

Sierra Park Water Co. Has Levels of Manganese Above the Drinking Water Standard

Our water system recently violated a drinking water standard. Although this is not an emergency, as our customers, you have a right to know what you should do, what happened, and what we are doing to correct this situation.

We routinely monitor for the presence of drinking water contaminants. Water sample results received on 05/09/2019 showed Manganese levels of 128 ug/L for Well #5 and 280 ug/L for Well #6. This is above the standard, or maximum contaminant level (MCL), of 50 ug/L. Well #6 recorded (ug/L) levels of 925 for Iron MCL is 300 ug/L+.

What should I do?

- You do not need to use an alternative water supply (e.g., bottled water).
- If you have other health issues concerning the consumption of this water, you may wish to consult your doctor.

What happened? What is being done?

At this time the Sierra Park Water Company has been instructed by the CPUC to put on hold any expenses related to the Manganese Removal Project until further instructions are given. There is currently an Engineering Study underway to review our options.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this public notice in a public place or distributing copies by hand or mail.

Secondary Notification Requirements

- RESIDENTIAL RENTAL PROPERTY OWNERS OR MANAGERS (including nursing homes and care facilities): Must notify tenants.
 - For more information, please contact Kirk Knudsen at 209 586-3098 or P.O. Box 424, Mi-Wuk Village, Ca. 95346

This notice is being sent to you by Sierra Park Water Company.

State Water System ID#: 5510016. Date distributed:

GENERAL M Date of Report: 18/08/ Laboratory Name: Name of Sampler: 08/00/ Date/Time Sample Collected: 5/3/19	S) Em	NORGANIC ANALYSIS (9/99) 4794, Sample ID No. Signature Lab Director: mployed By: le Date Analyses / / /0915 Completed: / /	N
System Name:SIERRA PARK WATER Name or Number of Samp	COMPANY, INC. le Source:WELL 05	System Number: 5510016	*
<pre>* User ID: AGE * Date/Time of Sample * * * Submitted by: ************************************</pre>	YY MM DD TTTT	Station Number: 5510016-006 Laboratory Code: YY MM DD Date Analysis completed: Phone #:	* * * *
MCL REPORTING UNITS	CHEMICAL	ENTRY ANALYSES DLR # RESULTS	Ī
	Mn only	FMAN	
		Call DAVE 0100	1

+524.MTCP

He will flu

PETAL

GENERAL MINERAL & PHYSICAL & INORGANIC ANALYSIS (9/99) Sample ID No. 9050705-01 Date of Report: 19/05/14 Laboratory Signature Lab onathan HaoV le Name: PRECISION ENVIRO-TECH ANALYTICAL LAB Director: Name of Sampler: Dave Roy Employed By: Aqualab Date/Time Sample Date/Time Sample Date Analyses Received @ Lab:19/05/07/1217 Collected: 19/05/03/0800 Completed: 19/05/09 ______ System System Name: SIERRA PARK WATER COMPANY, INC. Number: 5510016 Name or Number of Sample Source: WELL 05 ************************* Station Number: 5510016-006 User ID: AGE Date/Time of Sample: |19|05|03|0800| Laboratory Code: 2213 * YY MM DD TTTT YY MM DD Date Analysis completed: |19|05|09| * Submitted by: Phone #: ****************************** PAGE 1 OF 1 INORGANIC CHEMICALS MCL | REPORTING | CHEMICAL |ENTRY|ANALYSES| 1 UNITS | RESULTS 50 ug/L+ 01055 | 128 | 20.0 Manganese (Mn) (ug/L)

+ Indicates Secondary Drinking Water Standards

GENERAL MINER Date of Report: 18/08/15 Laboratory Name: Name of Sampler: Dave Date/Time Sample 0830 Collected: 5/3/19/	Sign Emplo Date/Time Sample	GANIC ANALYSIS (9/99) Sample ID No. nature Lab Director: Director: Date Analy	
System Name:SIERRA PARK WATER COM Name or Number of Sample S ************************************	MPANY, INC. Source:WELL 06 ************************************	System Number: 55 ***********************************	********** 016-007
* * Submitted by:		e Analysis completed: Phone #: ********* ENTRY AF	
<i>U</i>	Felmn	FMAN	
+ 5	A.M.TCP	Call 7	DAVE RO

PEARL

50

ug/L+

Manganese (Mn) (ug/L)

GENERAL MINERAL & PHYSICAL & INORGANIC ANALYSIS (9/99) Sample ID No.9050705-02 Date of Report: 19/05/14 Signature Lab Laboratory onathan HaoV le Name: PRECISION ENVIRO-TECH ANALYTICAL LAB Director: Employed By: Aqualab Name of Sampler: Dave Roy Date/Time Sample Date/Time Sample Date Analyses Received @ Lab:19/05/07/1217 Collected: 19/05/03/0800 Completed: 19/05/09 ______ System System Name: SIERRA PARK WATER COMPANY, INC. Number: 5510016 Name or Number of Sample Source: WELL 06 *********** Station Number: 5510016-007 User ID: AGE Date/Time of Sample: |19|05|03|0800| Laboratory Code: 2213 * YY MM DD TTTT YY MM DD Date Analysis completed: |19|05|09| * Phone #: Submitted by: ************** PAGE 1 OF 1 INORGANIC CHEMICALS |ENTRY|ANALYSES| DLR| MCL | REPORTING | CHEMICAL UNITS RESULTS 300 01045 925 | 100.0 ug/L+ Iron (Fe) (ug/L)

+ Indicates Secondary Drinking Water Standards

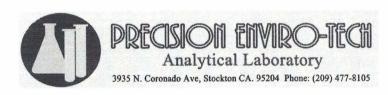
01055 |

280 | 20.0

May 14, 2019

Catherine Behee AquaLab P. O. Box 356 Twain Harte, CA 95383 Sierra Park Water 4794.W - 006 4794.X - 007

Project Name: 5510016


Enclosed are the results of analyses for samples received by our laboratory on 5/7/2019. The Samples were transported and received under documented Chain of Custody and stored at four (4) degrees C until analysis was performed. Sample were analyzed pursuant to client request utilizing EPA or other ELAP approved methodologies.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jonathan H.V. Le Laboratory Director

CA ELAP Accreditation Number 2387

Catherine Behee

AquaLab P. O. Box 356

Twain Harte, CA 95383

Sierra Park Water Well 5 - 006

Analytical Report Sample Results

Sample Information

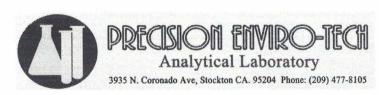
Laboratory ID: 9050705-01

Sample ID: 4794-W

Project Name: 5510016

Date/ Time Sampled Received: 5/7/2019 12:17:00PM

Sample Type: Grab
Sample Matirx: Water


Date/ Time Sampled Begin: 03-May-19 08:00

Date/ Time Sampled: 03-May-2019 8:00 By Dave Roy

Test Parameter	Result	DLR	Unit	Dilution	Batch	Prepared	Analysis Date	Method	MCL Notes
Manganese .	128	20.0	ug/l	1	AE90907	05/09/2019	05/09/2019	EPA 200.8	50

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document.

RESPECTFULLY SUBMITTED,

Catherine Behee

AquaLab P. O. Box 356

Twain Harte, CA 95383

Sierra Park Water Well 6 - 007

Analytical Report Sample Results

(Continued)

Sample Information

Laboratory ID: 9050705-02

Sample ID: 4794-X

Project Name: 5510016

Date/ Time Sampled Received: 5/7/2019 12:17:00PM

Sample Type: Grab

Sample Matirx: Water


Date/ Time Sampled Begin: 03-May-19 08:00

Date/Time Sampled: 03-May-2019 8:00 By Dave Roy

Test Parameter	Result	DLR	Unit	Dilution	Batch	Prepared	Analysis Date	Method	MCL Notes
Iron	925	100	ug/l	1	AE90907	05/09/2019	05/09/2019	EPA 200.8	300
Manganese	280	20.0	ug/l	1	AE90907	05/09/2019	05/09/2019	EPA 200.8	50

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document.

RESPECTFULLY SUBMITTED,

Catherine Behee

AquaLab P. O. Box 356

Twain Harte, CA 95383

Quality Control

Metals by EPA 200 Series Methods

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: AE90907 - EPA 200 Series		Proposition (Additional Conference on Confer							
Blank (AE90907-BLK1)				Prepared 8	Analyzed: 09	9-May-19			
Manganese	ND	20.0	ug/l						
Iron	ND	100	ug/l						
LCS (AE90907-BS1)				Prepared 8	Analyzed: 09	9-May-19			
Manganese	49.9	20.0	ug/l	50.0		100	90-110		
Iron	249	100	ug/l	250	***************************************	99	90-110		
Matrix Spike (AE90907-MS1)	Source: 9050707-01		Prepared 8	Prepared & Analyzed: 09-May-19					
Manganese	45.6	20.0	ug/l	50.0	ND	91	85-115		
Iron	283	100	ug/l	250	71.1	85	75-125	~	***************************************
Matrix Spike Dup (AE90907-MSD1)	Source: 9	050707-01		Prepared 8	Analyzed: 0	9-May-19			
Manganese	47.6	20.0	ug/l	50.0	ND	95	85-115	4	20
Iron	271	100	ug/l	250	71.1	80	75-125	4	20
Reference (AE90907-SRM1)				Prepared 8	Analyzed: 09	9-May-19			
Manganese	219	20.0	ug/l	221		99	85-115		
Iron	163	100	ug/l	183		89	85-115		

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document.

RESPECTFULLY SUBMITTED,

Catherine Behee

AquaLab P.O. Box 356

Twain Harte, CA 95383

Notes and Definitions

Definition Item

Dry

Sample results reported on a dry weight basis.

ND

Analyte NOT DETECTED at or below the reporting limit.

mg/L = milligrams per Liter = ppm

ug/L = micrograms per Liter = ppb

G- Grab Sample

C-Composite Sample

Comp-Grab- Composite of 4 Grab Sample during 24hrs Grab period and composite into I sample prior analysis

DLR = Detection Limit for Purpose of Reporting. Exceptional sample matrices or interferences may result in higher detection limits.

MCL- Maximum contaminant level (MCL) is the highest concentration of chemicals permitted in drinking water systems

RPD

Relative Percent Difference

%REC

Percent Recovery

Source

Sample that was matrix spiked or duplicated.

MMO-MUG-P/A - Total Coliform and E.Coli Test in Drinking Water by MMO-MUG, using Standard Method 22nd Edition.

The State Board of Health requires that bacteriological results must be 'ABSENCE' or less than 1.1 (for MTF method) to meet drinking water requirements.

The contents of this report apply to the sample(s) analyzed in accordance with the chain of custody document.

RESPECTFULLY SUBMITTED,

AquaLab STATE CERTIFIED WATER ANALYSIS P O Box 356 Twain Harte CA (209) 586-3400

FAX 546-7497

DATE SHIPPED:

PETAL

3935 North Coronado Ave, Stockton CA 95204 477-8105

CHAIN OF CUSTODY

EDT NUMBER	SAMPLE ID	COLLECTED DATE/TIME/BY	ANALYSES	MATRIX	PRESER.	
5510016-006	4794.W	5.3.19 0800 Dave Roy	Mn	GWP	HNO3	9050705-01
A STATE OF THE SECOND S		5.3.19 0850 Dave Ray	Fe, Mn	GWP		-02
*						
*					1	

MATRIX-GWPGROUND WATER POTABLE-GWNGROUND WATER NONPOTABLESWPSURFACE WATER POTABLE SWNSURFACE WATER NONPOTABLE WW WASTE WATER

RELINQUISHED BY UPS

DATE/TIME

PLEASE RETURN ICE CHESTS TO 18843 FIR, TWAIN HARTE, 95383

05/07/19 12:17PM